
Transfer learning and self-supervised

learning

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Why use transfer/self-supervised learning?

 It is often easier to obtain unlabeled data - from a lab instrument or a computer

- than labeled data, which can require human intervention

 Prepare labeling manuals, categories, hiring humans, creating GUIs, storage pipelines, etc.

 Sometimes it is also hard to label the data. For example it is difficult to

automatically assess the overall sentiment of a movie review: is it favorable or

not?

 Cognitive motivation: How animals / babies learn

2

“The brain has about 1014synapses and we only live for about

109 seconds. So we have a lot more parameters than data. This

motivates the idea that we must do a lot of unsupervised

learning” - Geoffrey Hinton

1. Transfer learning

 It is generally not a good idea to train a very large DNN from scratch: instead,

you should always try to find an existing neural network that accomplishes a

similar task to the one you are trying to tackle, then reuse the lower layers of

this network. This technique is called transfer learning

 It will not only speed up training considerably, but also require significantly less labeled

training data

 Suppose you have access to a DNN that was trained to classify pictures into

100 different categories, including animals, plants, vehicles, and everyday

objects. You now want to train a DNN to classify specific types of vehicles.

These tasks are very similar, even partly overlapping, so you should try to

reuse parts of the first network

3

Transfer learning

 Transfer learning work best when the inputs have similar low-level features

 The output layer of the original model should be replaced because it is most likely not

useful for the new task, and it may not have the right number of outputs for the new task

4

 Similarly, the upper hidden layers of the model

are less likely to be as useful as the lower

layers since the high-level features that are

most useful for the new task may differ

significantly from the ones that were most

useful for the original task

 If we treat the lower layer frozen, we can often

speed up training while still obtaining good

performance

 There exist complex variants such as adapter

https://arxiv.org/abs/1902.00751

Using pretrained model – feature extraction

 Feature extraction with a pretrained model is often useful in the visual task

 Such portability of learned features across different problems is an advantage of deep

learning compared to traditional approaches and is effective for small-data problems

5

Using pretrained model – feature extraction

 Convnets start with a series of pooling and convolution layers, and they end

with a densely connected classifier. The first part is called the convolutional

base of the model

 In the case of convnets, feature extraction consists of taking the convolutional base of a

previously trained network, and training a new classifier on top of the output

6

 Note that the level of generality of the

representations extracted by specific convolution

layers depends on the depth of the layer

 Layers that come earlier in the model extract local, highly

generic feature maps (such as visual edges, colors, and

textures), whereas layers that are higher up extract more-

abstract concepts (such as “cat ear” or “dog eye”)

https://christophm.github.io/interpretable-ml-book/cnn-features.html

Using pretrained model – fine-tuning

 Another widely used technique for model reuse, complementary to feature

extraction, is fine-tuning

7

 Fine-tuning consists of unfreezing a few of the

top layers of a frozen model base used for

feature extraction, and jointly training both the

newly added fully connected classifier and

these top layers

 When fine-tuning a model that includes

BatchNormalization layers, it is sometimes

recommended leaving these layers frozen

Discriminative learning rate

 Even after we unfreeze, we still care a lot about the quality of those pretrained

weights

1. We would not expect that the best learning rate for those pretrained parameters would be

as high as for the randomly added parameters

2. It often makes sense to let the later layers fine-tune more quickly than earlier layers

3. Use a lower learning rate for the early layers of the neural network, and a higher learning

rate for the later layers (and especially the randomly added layers)

8 https://github.com/gunchagarg/differential-learning-rate-keras

https://github.com/gunchagarg/differential-learning-rate-keras

From pretrained model to foundation model

 The pre-training task may be supervised or unsupervised; the main

requirements are that it can teach the model’s basic structure about the problem

domain and that it is sufficiently similar to the downstream fine-tuning task

 The notion of task similarity is not rigorously defined, but in practice, the domain of the

pre-training task is often broader than that of the fine-tuning task

 For example, it is common to use the ImageNet dataset to pretrain CNNs, which can then

be used for a variety of downstream tasks. ImageNet has 1.28 million natural images, each

associated with a label from one of 1,000 classes. The classes consist of different concepts,

including animals, foods, buildings, musical instruments, clothing, and so on

 For NLP, we could pre-train a model on a large English-labeled corpus before fine-tuning

on low-resource languages

 How about going beyond supervised pretrain?

9

https://www.image-net.org/

2. Self-supervised learning

 Self-supervised learning is an active research field. Self-supervised learning is

an approach to pre-training models using unlabeled data

 This term is used because the labels are created by the algorithm, rather than being

provided externally by a human, as in standard supervised learning. Both supervised and

self-supervised learning are discriminative tasks, since they require predicting outputs

given inputs

10

Supervised

𝑥

𝑦

label

ModelModel

ො𝑦

𝑥

𝑥′

𝑥′′

ModelModel

Self-

supervised

𝑦

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx

https://en.wikipedia.org/wiki/Self-supervised_learning
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx

Self-supervised learning - Pretrained using imputation tasks

 One approach to self-supervised learning is to solve imputation tasks. In this

approach, we partition the input vector x into two parts, 𝑥 = (𝑥′′,𝑥′), and then

try to predict the hidden part 𝑥′′ given the remaining visible part, 𝑥′, using a

model of the form ො𝑥 = 𝑓(𝑥′′ = 0,𝑥′) . We can think of this as a “fill-in-the-

blank” task; in the NLP community, this is called a cloze task

11 https://sites.google.com/view/berkeley-cs294-158-sp20/home

𝑥′

𝑥′′

https://sites.google.com/view/berkeley-cs294-158-sp20/home

山

 For more information see here

Self-supervised learning - Pretrained using imputation tasks

Transformer EncoderTransformer Encoder

中

MASK

Random

(special token)

大 學

LinearLinear

正 0.1

山 0.7

興 0.1

央 0.1

…… ……

(all characters)

=

=

or

Randomly masking some tokens

一、天、大、小 …

softmax

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx

Add noise

Encoding

Decoder

Embedding

Reconstruction

BERT(Bidirectional Encoder

Representations from Transformers, 110M)

https://d2l.ai/chapter_natural-language-processing-pretraining/word2vec-pretraining.html
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx

• Masked token prediction

BERTBERT
Self-supervised

Learning

Model for

text classification

Model for

text classification

Downstream Tasks

Model for

sentiment analysis

Model for

sentiment analysis

Model for

translation

Model for

translation

• The tasks we care

• We have a little bit labeled data

Fine-tune

Pre-train

Downstream task - NLP

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx
24

Data:

800M+2500M

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx

Self-supervised learning - Pretrained using imputation tasks

 Predict Next Token

14 <SOS> 中 山

中 山 大

ModelModel

? ? ? ?

大

學

Transformer DecoderTransformer Decoder
𝒗𝟏𝒌𝟏𝒒𝟏 𝒗𝟐𝒌𝟐𝒒𝟐 𝒗𝟑𝒌𝟑 𝒗𝟒𝒌𝟒

𝛼2,1
′ 𝛼2,2

′

𝒃𝟐

𝒂𝟒𝒂𝟑𝒂𝟐𝒂𝟏

𝒒𝟒𝒒𝟑

Masked attention

GPT (Generative Pre-

trained Transformer, 175B)

Downstream task - NLP

 In-context learning

15

“Few-shot”

Learning

(no gradient

descent)

“zero-shot”

Learning

GPTGPT

Data:

300B~400B

3. Self-supervised learning - contrastive tasks

 Solve proxy tasks, also called pretext tasks

 The basic idea is to create pairs of examples that are semantically similar to each other,

using data augmentation methods

 Train a self-supervised model to learn data representations by contrasting multiple

augmented views of the same example. These learned representations capture data

invariants, e.g., object translation, color jitter, noise, etc

16

https://arxiv.org/abs/2011.00362

https://arxiv.org/abs/2011.00362

Self-supervised learning - contrastive tasks

 Pretext tasks are self-supervised tasks that act as an important strategy to learn

representations of the data

 The original image acts as an anchor, its augmented version acts as a positive sample, and

the rest of the images in the batch or in the training data act as negative samples

17

Self-supervised learning - contrastive tasks - SimCLR

Encoder Encoder Encoder

positive negative

as close as

possible

as far as

possible

Data

Augmentation

random cropping,

color distortions,

Gaussian blur, etc.

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/SSL_speech_image%20(v9).pptx

https://arxiv.org/abs/2002.05709
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/SSL_speech_image (v9).pptx

Selecting Negative Examples is not trivial

 The negative examples should be hard enough

But cannot be too hard …

Bootstrapping Approaches - SimSiam

Encoder Encoder

positive

as close as possible

Collapse!
Encoder Encoder

positive

as close as possible

PredictorPredictor

update

Copy

update update

https://github.com/facebookresearch/simsiam

Downstream task – computer vision

 Downstream tasks are application-specific tasks that utilize the knowledge that

was learned during the contrastive task

21

 Training a classifier on top of the frozen

representations

 The learned parameters serve as a

pretrained model and are transferred to

other downstream computer vision tasks by

fine-tuning

 The encoder can then be used to produce

embedding or latent space

https://platform.openai.com/docs/guides/embeddings

Multimodal - CLIP (Contrastive Language–Image Pre-training)

 Text

 Self-supervised (LLM)

 Large training data

 Images

 Supervised learning

 Not that large training data

22

https://arxiv.org/abs/2203.15556

1.28M, 1000 classes

https://arxiv.org/abs/2203.15556

CLIP (Contrastive Language–Image Pre-training)

23
https://fullstackdeeplearning.com/course/2022/lecture-7-foundation-models/

min(

𝑖=1

𝑁

𝑗=1

𝑁

(𝐼𝑖 ∙ 𝑇𝑗)𝑖≠𝑗−

𝑖=1

𝑁

(𝐼𝑖 ∙ 𝑇𝑖))

Use dataset similar to WIT with 400M data

https://fullstackdeeplearning.com/course/2022/lecture-7-foundation-models/
https://github.com/google-research-datasets/wit

4. ChatGPT

 From GPT to ChatGPT

24 https://huyenchip.com/2023/05/02/rlhf.html

https://huyenchip.com/2023/05/02/rlhf.html

Supervised Fine-tuning

 Very little text in the original GPT-3 dataset is of suitable zero-shot form

 To improve performance on zero-shot inputs, fine-tuned on a smaller high-quality dataset

of instructions-completions

25

https://openai.com/blog/how-should-ai-systems-behave

https://openai.com/blog/how-should-ai-systems-behave

Reinforcement Learning from Human Feedback (RLHF)

26

https://www.nebuly.com/blog/reinforcement-learning-from-human-feedback-rlhf-a-simplified-explanation

https://www.nebuly.com/blog/reinforcement-learning-from-human-feedback-rlhf-a-simplified-explanation

Build your own ChaptGPT

 Alpaca

27 https://github.com/FreedomIntelligence/LLMZoo

Empirically derived formulas for optimal model and training set size given a fixed

compute budget (Open-source, but non-commercial)

https://crfm.stanford.edu/2023/03/13/alpaca.html
https://github.com/FreedomIntelligence/LLMZoo
https://ai.facebook.com/blog/large-language-model-llama-meta-ai/

Build your own ChaptGPT

 HuggingChat

 Based on LLaMA and finetune on an open dataset provided by OpenAssistant

 Dolly 2.0

 Based on Pythia that can be used in commercial product

 The dataset was authored by more than 5,000 Databricks employees during March and

April of 2023

28

 HuggingGPT

 Language serves as an interface for

LLMs to connect numerous AI

models for solving complicated AI

tasks!

https://huggingface.co/chat/privacy
https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor
https://github.com/databrickslabs/dolly
https://arxiv.org/abs/2304.01373
https://huggingface.co/spaces/microsoft/HuggingGPT

Conclusion

 Many ML models, especially neural networks, often have many more

parameters than we have labeled training examples

 Of course these parameters are highly correlated, so they are not independent “degrees of

freedom”. Nevertheless, such big models are slow to train and, more importantly, they may

easily overfit. This is particularly a problem when you do not have a large labeled training

set

 Pretraining using supervised, unsupervised or self-supervised way can greatly

benefit the downstream tasks by transferring knowledge from one task to

another

29

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition

Chapter 11,14

[2] Deep learning with Python, 2nd Edition Chapter 8

[3] https://speech.ee.ntu.edu.tw/~hylee/ml/2021-spring.php

[4] https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php Lecture 7, 11

[5] A Survey on Contrastive Self-supervised Learning

30

https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
https://www.manning.com/books/deep-learning-with-python-second-edition
https://speech.ee.ntu.edu.tw/~hylee/ml/2021-spring.php
https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php
https://arxiv.org/abs/2011.00362

Appendix

31

Resources

 Model repositories

 https://huggingface.co/models

 https://tfhub.dev/

 https://huggingface.co/ckiplab

 https://huggingface.co/ckip-joint

 Tutorial on transfer learning

 https://www.tensorflow.org/tutorials/images/transfer_learning

 https://github.com/jindongwang/transferlearning/tree/master/code/DeepDA

 Self-supervised learning

 https://github.com/tensorflow/similarity

 https://github.com/lightly-ai/lightly

 https://github.com/KeremTurgutlu/self_supervised/tree/main

 https://github.com/nlp-with-transformers/notebooks/tree/main

 https://huggingface.co/docs/transformers/tasks/zero_shot_image_classification
32

https://huggingface.co/models
https://tfhub.dev/
https://huggingface.co/ckiplab
https://huggingface.co/ckip-joint
https://www.tensorflow.org/tutorials/images/transfer_learning
https://github.com/jindongwang/transferlearning/tree/master/code/DeepDA
https://github.com/tensorflow/similarity
https://github.com/lightly-ai/lightly
https://github.com/KeremTurgutlu/self_supervised/tree/main
https://github.com/nlp-with-transformers/notebooks/tree/main
https://huggingface.co/docs/transformers/tasks/zero_shot_image_classification

Resources

 Foundation model

 https://snorkel.ai/foundation-models/

 https://github.com/facebookresearch/dinov2

 https://github.com/facebookresearch/ImageBind

 Prompt engineering

 https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/

 https://blog.o-w-o.cc/archives/chatgpt-prompt-guideline

 Tutorials on other related topics

 https://d2l.ai/chapter_natural-language-processing-pretraining/index.html

 Multi-Task Learning

 Zero-Shot Learning

 A Survey on Contrastive Self-supervised Learning

 Curriculum Learning

33

https://snorkel.ai/foundation-models/
https://github.com/facebookresearch/dinov2
https://github.com/facebookresearch/ImageBind
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
https://blog.o-w-o.cc/archives/chatgpt-prompt-guideline
https://d2l.ai/chapter_natural-language-processing-pretraining/index.html
https://arxiv.org/abs/2009.09796
https://arxiv.org/pdf/1707.00600
https://arxiv.org/abs/2011.00362
https://arxiv.org/abs/2011.00362

Unsupervised pretraining

 In case you want to tackle a complex task for which you don’t have much

labeled data, but unfortunately you can’t find a model trained on a similar task

34

 If you can gather plenty of unlabeled training data, you can try to use it to train an

unsupervised model, such as an autoencoder or a generative adversarial network

 You can then reuse the lower layers of the autoencoder or GAN’s discriminator, add the

output layer for your task on top, and finetune the final network with the labeled training

examples

Unsupervised pretrained

 If you have a large dataset but most of it is unlabeled, you can first train a

stacked autoencoder using all the data

35

 Then reuse the lower layers to create a

neural network for your actual task and

train it using the labeled data, you may

also want to freeze the pretrained layers

 When an autoencoder is neatly

symmetrical, a common technique is to

tie the weights of the decoder layers to

the weights of the encoder layers. This

halves the number of weights in the

model, speeding up training and limiting

the risk of overfitting

Training one autoencoder at a time

 It is possible to train one shallow autoencoder at a time, then stack all of them

into a single stacked autoencoder called “greedy layerwise training”

 During the first phase of training, the first autoencoder learns to reconstruct the inputs.

Then we encode the whole training set using this first autoencoder, and this gives us a new

(compressed) training set. We then train a second autoencoder on this new dataset. This is

the second phase of training

36

 Finally, we build a big sandwich

using all these autoencoders, This

gives us the final stacked

autoencoder

What is Self-Supervised Learning?

 A version of unsupervised learning where data provides the supervision.

 In general, withhold some part of the data and the task a neural network to

predict it from the remaining parts.

 Goal: Learning to represent the world before learning tasks.

37

Self-supervised learning

 Identifying the right pre-text task

 The choice of pretext task relies on the type of problem being solved

 The main aim of a pre-text task is to compel the model to be invariant to these

transformations while remaining discriminative to other data points

 For instance, colorization-based pretext tasks might not work out in a fine-grain

classification represented in figure

38

Alterative view of Bootstrapping

Teacher

Encoder

Student

Encoder

as close as possible

PredictorPredictor

update

Typical Knowledge Distillation

Teacher
Student

fixed

as close as possible

fixed
update

Student

becomes

teacher

EncoderEncoder Encoder

positive

as close as

possible

Invariance

EncoderEncoder

Variance

Variance lager than a threshold

Covarianc

e
Off-diagonal

elements close to 0 Prevent collapse

Audio: DeLoRes
https://arxiv.org/abs/2203.13628

In-context learning (Standard prompting)

41

Instruction tuning and Chain of Thought

42

Taxonomy of Transfer learning

43

T
ar

g
et

 D
at

a

Source Data (not directly related to the task)

labelled

la
b
el

le
d

unlabeled

u
n
la

b
el

ed

Multitask Learning

Fine-tuning

Self-taught learning

Self-supervised learning

Domain-adversarial

training

Zero-shot learning

Self-taught Clustering

“Transfer learning from unlabeled data”,

ICML, 2007

“Self-taught clustering”,

ICML 2008

https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/Lecture/transfer.pptx

Few-shot learning

https://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/Lecture/transfer.pptx

Domain adaptation

44

The results are from: http://proceedings.mlr.press/v37/ganin15.pdf

Domain shift: Training and testing data have different

distributions.

99.5% 57.5%

Training

Data

(Source domain)

Testing

Data

Domain

adaptation

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/da_v6.pptx

Target domain

http://proceedings.mlr.press/v37/ganin15.pdf
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/da_v6.pptx

Domain adaptation

 https://paperswithcode.com/sota/domain-adaptation-on-gta5-to-cityscapes

45

Source Domain

(with labeled data)

“4” “0” “1”
Knowledge of target domain

“8”

Little but

labeled

 Idea: training a model by

source data, then fine-

tune the model by target

data

 Challenge: only limited

target data, so be careful

about overfitting

Large amount of

unlabeled data

https://paperswithcode.com/sota/domain-adaptation-on-gta5-to-cityscapes

Domain adaptation

46

The same

distribution

feature

feature

Feature

Extractor

(network)

Feature

Extractor

(network)

Source

Target

Learn to ignore colors

Different

Domain adversarial training

47

Feature

Extractor

image class distribution

blue points

red points

Source

(labeled)

Target

(unlabeled)

“4”
Label

Predictor

Domain adversarial training

48

Feature

Extractor

Label

Predictor
“4”

Domain

Classifier

Source?

Target?

Discriminator

Generator

 Feature extractor: Learn to

“fool” domain classifier

always zero?

 Also need to support label

predictor

𝜃𝑝

𝜃𝑑

𝜃𝑓

𝐿

𝐿𝑑

𝜃𝑝
∗ = min

𝜃𝑝
𝐿

𝜃𝑑
∗ = min

𝜃𝑑
𝐿𝑑

𝜃𝑓
∗ = min

𝜃𝑓
𝐿 − 𝐿𝑑

Domain adversarial training

49

Semi-supervised learning

 Semi-supervised learning can alleviate the need for labeled data by taking

advantage of unlabeled data

 The general goal of semi-supervised learning is to allow the model to learn the high-level

structure of the data distribution from unlabeled data and only rely on the labeled data for

learning the fine-grained details of a given task

 Whereas in standard supervised learning we assume that we have access to samples from

the joint distribution of data and labels 𝑥, 𝑦~𝑝(𝑥, 𝑦), semi-supervised learning assumes

that we additionally have access to samples from the marginal distribution of 𝑥~𝑝(𝑥)

50

Semi-supervised learning: self-training and pseudo-labeling

 A straightforward approach to semi-supervised learning is self-training

 The basic idea behind self-training is to use the model itself to infer predictions on

unlabeled data, and then treat these predictions as labels for subsequent training

 Recently, it has become common to refer to this approach as “pseudo-labeling” because the

inferred labels for unlabeled data are only “pseudo-correct” in comparison with the true,

ground-truth targets used in supervised learning

 A common strategy is to use a “selection metric” which tries to only retain pseudo-labels

that are correct. For example, assuming that a model outputs probabilities for each possible

class, a frequently-used selection metric is to only retain pseudo-labels whose largest class

probability is above a threshold

 Also refer to noisy student approach, some recent paper advocate self-training approach

rather than supervised or self-supervised way, see here

51

https://arxiv.org/abs/1911.04252
https://arxiv.org/abs/2006.06882

