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Why use transfer/self-supervised learning?

 It is often easier to obtain unlabeled data - from a lab instrument or a computer 

- than labeled data, which can require human intervention

 Prepare labeling manuals, categories, hiring humans, creating GUIs, storage pipelines, etc.

 Sometimes it is also hard to label the data. For example it is difficult to 

automatically assess the overall sentiment of a movie review: is it favorable or 

not?

 Cognitive motivation: How animals / babies learn
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“The brain has about 1014synapses and we only live for about 

109 seconds. So we have a lot more parameters than data. This 

motivates the idea that we must do a lot of unsupervised 

learning” - Geoffrey Hinton



1. Transfer learning

 It is generally not a good idea to train a very large DNN from scratch: instead, 

you should always try to find an existing neural network that accomplishes a 

similar task to the one you are trying to tackle, then reuse the lower layers of 

this network. This technique is called transfer learning

 It will not only speed up training considerably, but also require significantly less labeled 

training data

 Suppose you have access to a DNN that was trained to classify pictures into 

100 different categories, including animals, plants, vehicles, and everyday 

objects. You now want to train a DNN to classify specific types of vehicles. 

These tasks are very similar, even partly overlapping, so you should try to 

reuse parts of the first network
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Transfer learning

 Transfer learning work best when the inputs have similar low-level features

 The output layer of the original model should be replaced because it is most likely not 

useful for the new task, and it may not have the right number of outputs for the new task

4

 Similarly, the upper hidden layers of the model 

are less likely to be as useful as the lower 

layers since the high-level features that are 

most useful for the new task may differ 

significantly from the ones that were most 

useful for the original task

 If we treat the lower layer frozen, we can often 

speed up training while still obtaining good 

performance

 There exist complex variants such as adapter

https://arxiv.org/abs/1902.00751


Using pretrained model – feature extraction

 Feature extraction with a pretrained model is often useful in the visual task

 Such portability of learned features across different problems is an advantage of deep 

learning compared to traditional approaches and is effective for small-data problems
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Using pretrained model – feature extraction

 Convnets start with a series of pooling and convolution layers, and they end 

with a densely connected classifier. The first part is called the convolutional 

base of the model

 In the case of convnets, feature extraction consists of taking the convolutional base of a 

previously trained network, and training a new classifier on top of the output
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 Note that the level of generality of the 

representations extracted by specific convolution 

layers depends on the depth of the layer 

 Layers that come earlier in the model extract local, highly 

generic feature maps (such as visual edges, colors, and 

textures), whereas layers that are higher up extract more-

abstract concepts (such as “cat ear” or “dog eye”)

https://christophm.github.io/interpretable-ml-book/cnn-features.html


Using pretrained model – fine-tuning

 Another widely used technique for model reuse, complementary to feature 

extraction, is fine-tuning
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 Fine-tuning consists of unfreezing a few of the 

top layers of a frozen model base used for 

feature extraction, and jointly training both the 

newly added fully connected classifier and 

these top layers

 When fine-tuning a model that includes 

BatchNormalization layers, it is sometimes 

recommended leaving these layers frozen 



Discriminative learning rate 

 Even after we unfreeze, we still care a lot about the quality of those pretrained

weights

1. We would not expect that the best learning rate for those pretrained parameters would be 

as high as for the randomly added parameters

2. It often makes sense to let the later layers fine-tune more quickly than earlier layers

3. Use a lower learning rate for the early layers of the neural network, and a higher learning 

rate for the later layers (and especially the randomly added layers)

8 https://github.com/gunchagarg/differential-learning-rate-keras

https://github.com/gunchagarg/differential-learning-rate-keras


From pretrained model to foundation model 

 The pre-training task may be supervised or unsupervised; the main 

requirements are that it can teach the model’s basic structure about the problem 

domain and that it is sufficiently similar to the downstream fine-tuning task

 The notion of task similarity is not rigorously defined, but in practice, the domain of the 

pre-training task is often broader than that of the fine-tuning task

 For example, it is common to use the ImageNet dataset to pretrain CNNs, which can then 

be used for a variety of downstream tasks. ImageNet has 1.28 million natural images, each 

associated with a label from one of 1,000 classes. The classes consist of different concepts, 

including animals, foods, buildings, musical instruments, clothing, and so on

 For NLP, we could pre-train a model on a large English-labeled corpus before fine-tuning 

on low-resource languages

 How about going beyond supervised pretrain?
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https://www.image-net.org/


2. Self-supervised learning

 Self-supervised learning is an active research field. Self-supervised learning is 

an approach to pre-training models using unlabeled data

 This term is used because the labels are created by the algorithm, rather than being 

provided externally by a human, as in standard supervised learning. Both supervised and 

self-supervised learning are discriminative tasks, since they require predicting outputs 

given inputs
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https://en.wikipedia.org/wiki/Self-supervised_learning
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx


Self-supervised learning - Pretrained using imputation tasks

 One approach to self-supervised learning is to solve imputation tasks. In this 

approach, we partition the input vector x into two parts, 𝑥 = (𝑥′′,𝑥′), and then 

try to predict the hidden part 𝑥′′ given the remaining visible part, 𝑥′, using a 

model of the form ො𝑥 = 𝑓(𝑥′′ = 0,𝑥′) . We can think of this as a “fill-in-the-

blank” task; in the NLP community, this is called a cloze task

11 https://sites.google.com/view/berkeley-cs294-158-sp20/home
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Self-supervised learning - Pretrained using imputation tasks
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https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx
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Data: 

800M+2500M

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/bert_v8.pptx


Self-supervised learning - Pretrained using imputation tasks
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Downstream task - NLP

 In-context learning
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3. Self-supervised learning - contrastive tasks 

 Solve proxy tasks, also called pretext tasks

 The basic idea is to create pairs of examples that are semantically similar to each other,

using data augmentation methods

 Train a self-supervised model to learn data representations by contrasting multiple 

augmented views of the same example. These learned representations capture data 

invariants, e.g., object translation, color jitter, noise, etc
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https://arxiv.org/abs/2011.00362

https://arxiv.org/abs/2011.00362


Self-supervised learning - contrastive tasks 

 Pretext tasks are self-supervised tasks that act as an important strategy to learn 

representations of the data 

 The original image acts as an anchor, its augmented version acts as a positive sample, and 

the rest of the images in the batch or in the training data act as negative samples 
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Self-supervised learning - contrastive tasks  - SimCLR
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https://arxiv.org/abs/2002.05709
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2022-course-data/SSL_speech_image (v9).pptx


Selecting Negative Examples is not trivial 

 The negative examples should be hard enough

But cannot be too hard …



Bootstrapping Approaches - SimSiam
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https://github.com/facebookresearch/simsiam


Downstream task – computer vision

 Downstream tasks are application-specific tasks that utilize the knowledge that 

was learned during the contrastive task
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 Training a classifier on top of the frozen 

representations 

 The learned parameters serve as a 

pretrained model and are transferred to 

other downstream computer vision tasks by 

fine-tuning

 The encoder can then be used to produce 

embedding or latent space

https://platform.openai.com/docs/guides/embeddings


Multimodal - CLIP (Contrastive Language–Image Pre-training) 

 Text

 Self-supervised (LLM)

 Large training data

 Images

 Supervised learning

 Not that large training data
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https://arxiv.org/abs/2203.15556

1.28M, 1000 classes

https://arxiv.org/abs/2203.15556


CLIP (Contrastive Language–Image Pre-training) 
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https://fullstackdeeplearning.com/course/2022/lecture-7-foundation-models/
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https://fullstackdeeplearning.com/course/2022/lecture-7-foundation-models/
https://github.com/google-research-datasets/wit


4. ChatGPT

 From GPT to ChatGPT

24 https://huyenchip.com/2023/05/02/rlhf.html

https://huyenchip.com/2023/05/02/rlhf.html


Supervised Fine-tuning 

 Very little text in the original GPT-3 dataset is of suitable zero-shot form

 To improve performance on zero-shot inputs, fine-tuned on a smaller high-quality dataset 

of instructions-completions  
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https://openai.com/blog/how-should-ai-systems-behave

https://openai.com/blog/how-should-ai-systems-behave


Reinforcement Learning from Human Feedback (RLHF)
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https://www.nebuly.com/blog/reinforcement-learning-from-human-feedback-rlhf-a-simplified-explanation

https://www.nebuly.com/blog/reinforcement-learning-from-human-feedback-rlhf-a-simplified-explanation


Build your own ChaptGPT

 Alpaca

27 https://github.com/FreedomIntelligence/LLMZoo

Empirically derived formulas for optimal model and training set size given a fixed 

compute budget (Open-source, but non-commercial)

https://crfm.stanford.edu/2023/03/13/alpaca.html
https://github.com/FreedomIntelligence/LLMZoo
https://ai.facebook.com/blog/large-language-model-llama-meta-ai/


Build your own ChaptGPT

 HuggingChat

 Based on LLaMA and finetune on an open dataset provided by OpenAssistant

 Dolly 2.0

 Based on Pythia that can be used in commercial product

 The dataset was authored by more than 5,000 Databricks employees during March and 

April of 2023
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 HuggingGPT

 Language serves as an interface for 

LLMs to connect numerous AI 

models for solving complicated AI 

tasks!

https://huggingface.co/chat/privacy
https://huggingface.co/OpenAssistant/oasst-sft-6-llama-30b-xor
https://github.com/databrickslabs/dolly
https://arxiv.org/abs/2304.01373
https://huggingface.co/spaces/microsoft/HuggingGPT


Conclusion

 Many ML models, especially neural networks, often have many more 

parameters than we have labeled training examples

 Of course these parameters are highly correlated, so they are not independent “degrees of 

freedom”. Nevertheless, such big models are slow to train and, more importantly, they may 

easily overfit. This is particularly a problem when you do not have a large labeled training 

set

 Pretraining using supervised, unsupervised or self-supervised way can greatly 

benefit the downstream tasks by transferring knowledge from one task to 

another
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Appendix
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Resources

 Model repositories

 https://huggingface.co/models

 https://tfhub.dev/

 https://huggingface.co/ckiplab

 https://huggingface.co/ckip-joint

 Tutorial on transfer learning

 https://www.tensorflow.org/tutorials/images/transfer_learning

 https://github.com/jindongwang/transferlearning/tree/master/code/DeepDA

 Self-supervised learning

 https://github.com/tensorflow/similarity

 https://github.com/lightly-ai/lightly

 https://github.com/KeremTurgutlu/self_supervised/tree/main

 https://github.com/nlp-with-transformers/notebooks/tree/main

 https://huggingface.co/docs/transformers/tasks/zero_shot_image_classification
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Resources

 Foundation model

 https://snorkel.ai/foundation-models/

 https://github.com/facebookresearch/dinov2

 https://github.com/facebookresearch/ImageBind

 Prompt engineering

 https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/

 https://blog.o-w-o.cc/archives/chatgpt-prompt-guideline

 Tutorials on other related topics

 https://d2l.ai/chapter_natural-language-processing-pretraining/index.html

 Multi-Task Learning

 Zero-Shot Learning

 A Survey on Contrastive Self-supervised Learning

 Curriculum Learning
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Unsupervised pretraining

 In case you want to tackle a complex task for which you don’t have much 

labeled data, but unfortunately you can’t find a model trained on a similar task 
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 If you can gather plenty of unlabeled training data, you can try to use it to train an 

unsupervised model, such as an autoencoder or a generative adversarial network

 You can then reuse the lower layers of the autoencoder or GAN’s discriminator, add the 

output layer for your task on top, and finetune the final network with the labeled training 

examples



Unsupervised pretrained

 If you have a large dataset but most of it is unlabeled, you can first train a 

stacked autoencoder using all the data
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 Then reuse the lower layers to create a 

neural network for your actual task and 

train it using the labeled data, you may 

also want to freeze the pretrained layers 

 When an autoencoder is neatly 

symmetrical, a common technique is to 

tie the weights of the decoder layers to 

the weights of the encoder layers. This 

halves the number of weights in the 

model, speeding up training and limiting 

the risk of overfitting



Training one autoencoder at a time

 It is possible to train one shallow autoencoder at a time, then stack all of them 

into a single stacked autoencoder called “greedy layerwise training”

 During the first phase of training, the first autoencoder learns to reconstruct the inputs. 

Then we encode the whole training set using this first autoencoder, and this gives us a new 

(compressed) training set. We then train a second autoencoder on this new dataset. This is 

the second phase of training
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 Finally, we build a big sandwich 

using all these autoencoders, This 

gives us the final stacked 

autoencoder



What is Self-Supervised Learning?

 A version of unsupervised learning where data provides the supervision.

 In general, withhold some part of the data and the task a neural network to 

predict it from the remaining parts.

 Goal: Learning to represent the world before learning tasks.
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Self-supervised learning

 Identifying the right pre-text task

 The choice of pretext task relies on the type of problem being solved

 The main aim of a pre-text task is to compel the model to be invariant to these 

transformations while remaining discriminative to other data points

 For instance, colorization-based pretext tasks might not work out in a fine-grain 

classification represented in figure
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Alterative view of Bootstrapping
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In-context learning (Standard prompting)
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Instruction tuning and Chain of Thought
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Taxonomy of Transfer learning
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Domain adaptation 

44

The results are from: http://proceedings.mlr.press/v37/ganin15.pdf

Domain shift: Training and testing data have different 

distributions. 
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http://proceedings.mlr.press/v37/ganin15.pdf
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/da_v6.pptx


Domain adaptation 

 https://paperswithcode.com/sota/domain-adaptation-on-gta5-to-cityscapes
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Domain adaptation 

46

The same 

distribution

feature

feature

Feature 

Extractor

(network) 

Feature 

Extractor

(network) 

Source 

Target

Learn to ignore colors

Different



Domain adversarial training
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Domain adversarial training
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Domain adversarial training
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Semi-supervised learning

 Semi-supervised learning can alleviate the need for labeled data by taking 

advantage of unlabeled data

 The general goal of semi-supervised learning is to allow the model to learn the high-level 

structure of the data distribution from unlabeled data and only rely on the labeled data for 

learning the fine-grained details of a given task

 Whereas in standard supervised learning we assume that we have access to samples from 

the joint distribution of data and labels 𝑥, 𝑦~𝑝(𝑥, 𝑦), semi-supervised learning assumes 

that we additionally have access to samples from the marginal distribution of 𝑥~𝑝(𝑥)
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Semi-supervised learning: self-training and pseudo-labeling

 A straightforward approach to semi-supervised learning is self-training

 The basic idea behind self-training is to use the model itself to infer predictions on 

unlabeled data, and then treat these predictions as labels for subsequent training 

 Recently, it has become common to refer to this approach as “pseudo-labeling” because the 

inferred labels for unlabeled data are only “pseudo-correct” in comparison with the true, 

ground-truth targets used in supervised learning

 A common strategy is to use a “selection metric” which tries to only retain pseudo-labels 

that are correct. For example, assuming that a model outputs probabilities for each possible 

class, a frequently-used selection metric is to only retain pseudo-labels whose largest class 

probability is above a threshold

 Also refer to noisy student approach, some recent paper advocate self-training approach 

rather than supervised or self-supervised way, see here
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https://arxiv.org/abs/1911.04252
https://arxiv.org/abs/2006.06882

